2019학년도 1학기

고등분석화학 1: 강의 소개

담당교수: 이원용 (연구실: 과 443-C, 전화: 2123-2649, 전자우편: wylee@yonsei.ac.kr)

Principles of Instrumental Analysis, 6th edition. By Holler, Skoog, Crouch 분석화학 기초개념/원자분광분석법/전기분석/분리분석을 중심으로 강의

성적평가

- 시험: 중간시험 (4월15일, 오후 6시-8시) 기말시험 (6월 3일, 오후 6시-8시) - 출석점수: 없음, 단 1/3이상 결석은 F 학점,

2019년도 고등분석화학 1 강의 계획

일시	수업내용
2019.03.04	Chapter 1: Introduction
2019.03.11	Chapter 6: Review (Introduction to Spectrometric Methods) Chapter 7: Components of Optical Instrument
2019.03.18	Chapter 8-10: Atomic Spectrometry Chapter 10: Atomic Emission Spectrometry
2019.03.25	Chapter 11: Atomic Mass Spectrometry Chapter 20: Molecular Mass Spectrometry
2019.04.01	Chapter 21: Surface Characterization by Spectroscopy
2019.04.08	Chapter 22: Electroanalytical Chemistry
2019.04.15	중간시험 (오후 6시-8시)
2019.04.22	중간시험기간 (no class)
2019.04.29	Chapter 25: Volammetry
2019.05.06	대체공휴일(no class)
2019.05.13	Chapter 26. Introduction/ Chapter 27. Gas Chromatography
2019.05.20	Chapter 28. Liquid Chromatography
2019.05.27	Chapter 29. SFC/Chapter 30. Capillary Electrophoresis
2019.06.03	기말시험 (오후 6시-8시)

Instrumental Analysis

Characteristic Properties	Instrumental Methods		
Emission of radiation	Emission spectroscopy (X-ray, UV, visible, electron, Auger); fluorescence, phosphorescence, and luminescence (X-ray, UV, and visible)		
Absorption of radiation	Spectrophotometry and photometry (X-ray, UV, visible, IR); photoacoustic spectroscopy; nuclear magnetic resonance and electron spin resonance spectroscopy		
Scattering of radiation	Turbidimetry; nephelometry; Raman spectroscopy		
Refraction of radiation	Refractometry; interferometry		
Diffraction of radiation	X-ray and electron diffraction methods		
Rotation of radiation	Polarimetry; optical rotary dispersion; circular dichroism		
Electrical potential	Potentiometry; chronopotentiometry		
Electrical charge	Coulometry Electroapalytical Chemistry		
Electrical current	Amperometry; polarography		
Electrical resistance	Conductometry		
Mass	Gravimetry (quartz crystal microbala	nce)	
Mass-to-charge ratio	Mass spectrometry		
Rate of reaction	Kinetic methods		
Thermal characteristics	Thermal gravimetry and titrimetry; differential scanning calorimetry; differential thermal analyses; thermal conductometric methods		
Radioactivity	Activation and isotope dilution methods		

TABLE 1-1 Chemical and Physical Properties Used in Instrumental Methods

© 2007 Thomson Higher Education

Figure of Merit

: Performance characteristics of instruments

- Given instrumental method is suitable for attacking an analytical problem.
- Figure of merit permit the chemist to narrow the choice of instruments for given analytical problem to a relatively few.

TABLE 1-3Numerical Criteriafor Selecting Analytical Methods

Criterion	Figure of Merit
1. Precision	Absolute standard deviation, relative standard deviation, coefficient of variation, variance
2. Bias	Absolute systematic error, relative systematic error
3. Sensitivity	Calibration sensitivity, analytical sensitivity
4. Detection limit	Blank plus three times standard deviation of the blank
5. Dynamic range	Concentration limit of quantitation (LOQ) to concentration limit of linearity (LOL)
6. Selectivity	Coefficient of selectivity

© 2007 Thomson Higher Education

• Precision (reproducibility):

The degree of agreement between replicate measurement of the same quantity

• Accuracy:

The degree of agreement between the estimated concentration and true value (or certified value)

TABLE 1-5 Figures of Merit forPrecision of Analytical Methods

Terms	Definition*
Absolute standard deviation, s	$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$
Relative standard deviation (RSD)	$RSD = \frac{s}{\overline{x}}$
Standard error of the mean, s_m	$s_{\rm m} = s/\sqrt{N}$
Coefficient of variation (CV)	$CV = \frac{s}{x} \times 100\%$
Variance	S^2

Experiment 1:

Signal 1 = 1001Signal 2 = 1000Signal 3 = 999

Average 1000 Standard deviation = 1 RSD = 1/1000 = 0.1%

Experiment 2:

Signal 1 = 0.005Signal 2 = 0.007Signal 3 = 0.003

Average 0.005Standard deviation = 0.002RSD = 0.002/0.005 = 40%

Bias

It provides a measure of the systematic or determinate error of an analytical method

bias = $\mu - \chi_t$

 μ = population mean (certified value) χ_t = sample mean

Figure a1-2 Illustration of bias = $\mu_B - \mu_A = \mu_B - x_i$

Systematic Error: Bias

: determinative error (고정오차, 가측 오차)

Instrumental error:

- drift in electronic circuits
- calibration error

Personal error: Method errors:

Standard (certified) Reference Materials (SRM) : validation

Analyte concentration

Fig. 3-3 Representation of systematic errors.

Random Error:

indeterminate error

TABLE a1-1 Replicate Absorbance Measurements^a

Trial	Absorbance, A	Trial	Absorbance, A	Trial	Absorbance, A
1	0.488	18	0.475	35	0.476
2	0.480	19	0.480	36	0.490
3	0.486	20	0.494^{b}	37	0.488
4	0.473	21	0.492	38	0.471
5	0.475	22	0.484	39	0.486
6	0.482	23	0.481	40	0.478
7	0.486	24	0.487	41	0.486
8	0.482	25	0.478	42	0.482
9	0.481	26	0.483	43	0.477
10	0.490	27	0.482	44	0.477
11	0.480	28	0.491	45	0.486
12	0.489	29	0.481	46	0.478
13	0.478	30	0.469 ^c	47	0.483
14	0.471	31	0.485	48	0.480
15	0.482	32	0.477	49	0.483
16	0.483	33	0.476	50	0.479
17	0.488	34	0.483		
Mean absor Standard de	bance = 0.482 eviation = 0.0056				

^aData are listed in the order obtained.

^bMaximum value. ^cMinimum value.

In the absence of systematic error, the measurement of a large set of data Approaches the true value

Sensitivity

Sensitivity (감도)

- A measure of its ability to distinguish between small differences in analyte concentration
- Quantitative definition of sensitivity by IUPAC:

Calibration sensitivity

$$S = mc + S_{bl}$$

S: measured signal S_{bl} can: blank signal m: slope of calibration curve = calibration sensitivity

Unnumbered figure pg 86 Quantitative Chemical Analysis, Seventh Edition © 2007 W.H. Freeman and Company

Detection Limit

Detection limit (limit of detection; C_m)

- : the minimum concentration or mass of analyte that can be detected at a known confidence level
- Depends upon the ratio of the analytical signal to the size of the statistical fluctuations in the blank signal (S/N)
- S_m : minimum distinguishable analytical signal (S/N =3)
- $S_m = S_{bl} + k s_{bl}$ (k = <u>3</u> or 2)
- \overline{S}_{bl} (average blank signal), s_{bl} (standard deviation of blank signal)
- S_m can be determined by performing 20 to 30 blank measurements.
- $C_m = (S_m \overline{S}_{bl})/m$

Determination of lead (based on flame emission spectrum)

Calibration data : $s = 1.12 C_{Pb} + 0.312$

Conc, ppm, Pb	No. of replications	Mean value of <i>S</i> ,	S
10.0	10	11.62	0.15
1.00	10	1.12	0.025
0.000 (blank)	24	0.0296	0.0082

(a) Calibration sensitivity = ? \rightarrow slope = 1.12

(b) Detection limit = ? \rightarrow S_m = S_{bl} + 3 x S_{bl} = 0.0296 + 3 x 0.0082 = 0.054

Detection limit, $C_m = (0.054-0.0296)/1.12 = 0.022 \text{ ppm Pb}$

Linear Dynamic range = LOQ ~ LOL

Concentration

Calibration

A process that relates the measured signal to the concentration of analytes

- Simple (external) calibration method

(no matrix effect or pre-separation step)

The plot between series of standards and signal

- Standard addition method

Add standard solutions to sample (several aliquot of the same size)

- Internal standard method

A substance is added in a constant amount to all samples, blank and calibration standards

Standard Addition Method

- Useful for analyzing complex samples in which matrix effect is substantial.

- Known quantities of analyte are added to the unknown: from the increase in signal, concentration of analyte in original unknown can be deduced.

Figure 5-6 Quantitative Chemical Analysis, Seventh Edition © 2007 W. H. Freeman and Company

Standard Addition Method

Det. of	<u>.</u> - Zn ²⁺	solution by AAS		By linear regression (AD)
	using	standard addition	method	
	step #	conc. of added Zn Cppm)	Absorbance	Conc
	i.		391.0	
	2	0.5	0.289	$\mathbf{H}_{i} = 0$
	3	1.0	0.343	$A_{\lambda} = 0 =$
	4	ع ، ه	0. 535	

$$A_{i} = 0.1PP + 0.1PP = 0.1PP = 0.1PP$$

$$A_{i} = 0.1PP + 0.1PP = 0.1P$$

Internal Standard

An internal standard (IS) is a known amount of compound, different from analyte, that is added to the unknown sample.

IS: useful in analyses in which the quantity of sample analyzed or the instrument response varies slightly from run to run for reasons that are difficult to control

Gas and liquid chromatography:

- flow rate change \rightarrow response change
- small quantity of solution is injected: not reproducible

Relative response of the detector to the analyte and standard is constant: (e.g) flow rate change \rightarrow S(IS) 5% increase \rightarrow S(analyte) 5% increase

The concentration of IS is known \rightarrow correct concentration of analyte can be derived.

IS is also desirable when sample loss can occur during sample preparation before analysis.

Internal Standard

and diluted to 25 mL \rightarrow Ax = 553, As = 582

[S] = 0.146 M x dilution factor (10.0/25.0) = 0.0584 M553/[X] = 0.970 (582/0.0584) \rightarrow [X] = 0.0572 M

Thus, original concentration of X in unknown is 0.0572 x (25.0 mL/10.0 mL) = 0.143 M